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Abstract
We numerically investigate the static properties of the two-dimensional (2D)
XY-model on the Voronoi–Delaunay lattice, with average connectivity k ∼ 6.
The critical temperature, magnetization and vortex density are obtained. For
instance, in this lattice the critical temperature, above which free vortices
take place, reads T VD

cr ≈ 1.22 (in units of J, the exchange constant), higher
than their counterparts for regular square, T SL

cr ≈ 0.79, and triangular lattices
T TL

cr ≈ 1.156, with constant connectivity given by 4 and 6, respectively. Such
results lead us to argue that not only the connectivity number but also how
the sites are distributed and linked among themselves is also important for
determining these physical quantities.

PACS numbers: 75.10.Hk, 75.40.Mg, 05.50+q

1. Introduction and motivation

The XY-model and its version with only two spin components, i.e. the planar rotator model
(PRM; which is S0(2) rotationally invariant), are two of the most important and well-studied
models in statistical mechanics and condensed matter physics [1–3]. They find applications
in several areas of physics such as superconductivity, superfluidity, magnetism, etc. In two
spatial dimensions (2D) these systems exhibit a topological phase transition based on the
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mechanism of unbinding of vortices [1, 2]. At low temperature, only pairs of bounded vortex–
antivortex are observed while at the critical temperature T BKT

cr (the Berezinskii–Kosterlitz–
Thouless temperature), the system exhibits a landscape characterized by the presence of free
vortices and, as a consequence, it becomes considerably disordered. In the past few years,
the interest in magnetic vortex-like excitations has been renewed, once they have been often
observed in micro and submicro samples with several sizes and geometries. In turn, such
observations were possible by virtue of remarkable advances in material science fabrication
and characterization. In addition, there is a considerable appeal and realist proposals for using
their magnetic properties, namely vortex-type magnetization, in new mechanisms and devices
for data storage, logical operations, ultra-precise sensors and so on [4]. As a byproduct, the
study of magnetic models defined on other 2D geometrical supports, besides the usual planar
one, has received considerable attention. Therefore, a number of variants of the Heisenberg
exchange model (including XY, easy-plane, PRM, etc) have recently been studied in discrete
lattice and continuum 2D spaces with curvature and/or non-trivial topology. Among them, we
quote cylindrical [5–7], spherical [8], toroidal [9, 10], conical [11–13] and pseudospherical
supports [14–16].

Another related topic of importance is the effect of structural or artificial defects such as
nonmagnetic impurities or bond dilutions introduced in regular 2D lattices [17–21]. Besides,
there is an increasing interest in the investigation of the physical properties of magnetic
systems on complex networks, such as lattices with unusual distributions of sites [22–24]. Such
problems have motivated us to consider the XY-ferromagnetic model on the Voronoi–Delaunay
lattice, where the number of connections between the sites follow a Poisson distribution. In
physics, besides its several applications, the Voronoi cells may serve as a tool for analyzing
theoretical models whenever comparing their results with those well established for regular
lattices. For instance, Voronoi construction is the natural way to define ‘neighborhood’
relations between randomly located spatial sites in a lattice. Indeed, in a dense configuration
of real particles, these cells define lattice defects, somewhat similar to those observed in
diluted systems. In these circumstances, it should be important to know how these rather
distinct defects affect some static and dynamic properties of topological excitations. In this
paper, we shall focus on the question whether the XY-model on the Voronoi–Delaunay lattice
presents a BKT-type phase transition and what are the quantitative and qualitative changes in
the physical properties of the system and their relations with vortices.

2. Model and method

To build the Voronoi–Delaunay (VD) network we consider a bounded domain � in a d-
dimensional space where a set of N nodes is randomly placed with uniform distribution. The
Voronoi diagram of this set is a sub-division of the domain into regions Vi (i = 1, 2, . . . , N),
such that any point in Vi is closer to the node i than any other node j in the set. In figure 1(a)
we show a Voronoi diagram obtained on a square region of size L = 20 with L2 nodes. All
cells sharing a face are considered neighbors and the network obtained by linking the neighbor
sites is the VD lattice of the diagram. Figure 1(b) shows the dual lattice obtained using
the Voronoi diagram presented in figure 1(a). In this work we closely follow the technique
described in [25] to build the lattice, and we have used periodic boundary conditions (PBC)
whenever calculating thermodynamic quantities in order to minimize finite size effects, in such
a way that the obtained results rapidly converge to their thermodynamic limit counterparts. An
important ingredient to generate the VD lattices is that the number of connections (links) for
each site is chosen randomly and follows a Poisson distribution, as shown in figure 2 for the
normalized frequency P(k) (in logarithmic scale) as a function of the number of connections
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(a) (b)

Figure 1. (a) An example of the VD network with 400 sites distributed on a square region of size
L = 20. (b) The corresponding VD lattice for the diagram shown in (a). Clearly, the number of
connections of site i is not necessarily equal to that of site j .

(This figure is in colour only in the electronic version)
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Figure 2. The normalized frequency P(k) (in the logarithmic scale) versus the number of nearest
neighbor, k, in the VD lattice. For the sizes L above the connectivity reads around k = 6.

k for the Voronoi–Delaunay lattice. The connectivity, i.e. the mean number of connections
per site, k = 1

L2

∑L2

i=1 ki = 6, where ki is the number of links of site i (more precisely, our
values range in the interval [5.999, 6.003] in obtaining all results throughout this paper). Let
us recall that for regular square (SL), triangular (TL) and hexagonal (HL) lattices we have
4, 6 and 3, respectively. Distinct from a regular lattice, where the number of connections is
constant throughout the system, in the VD framework it varies randomly, averaging to 6, at
the thermodynamic limit, L → ∞. This paper is devoted to investigate how the variation
in the number, and mainly the geometrical distribution of links in the lattice may affect
some statistical quantities, namely those concerned with the (topological) phase transition,
such as the critical temperature and the vortex saturation density, at high temperatures. As
randomly diluted systems with XY-symmetry in square lattices (thus, with k < 4) have
attracted considerable attention in the past few years [17–21], it would be interesting to know
how things change as connectivity is varied and randomly distributed, now for k > 4.
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Now, we consider the XY-model described by the Hamiltonian below:

H = −J
∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j

)
, (1)

where
∑

〈i,j〉 indicates a summation over all ‘nearest-neighbor’ site pairs and J > 0 is the
ferromagnetic coupling constant, assumed to have the same value for all pairs of spins. In the
XY-model the classical spin vectors �Si have three components �Si = (

Sx
i

)
î +

(
S

y

i

)
ĵ +

(
Sz

i

)
k̂. At

this point, we should stress that the Hamiltonian above also describes the SO(2) rotationally
invariant planar rotator model (PRM). The main difference between XY and PRM lies in the
fact that while in the first, Sz acquires non-trivial values through true dynamics (coming about
from the non-vanishing quantum-mechanical commutator [Sz,H ] = ih̄(d/dt)Sz), in the latter
Sz identically vanishes, making PRM a rigid model whose ‘dynamics’ is strictly confined to the
plane. We also remark that in our calculations we have used a hybrid Monte Carlo algorithm
which includes cluster and single spin updates to calculate some thermodynamic quantities
for the model defined by the Hamiltonian (1). Each Monte Carlo step (MCS) in our scheme
consists of four Metropolis [26] updates, say, 4 × L2 spin updates, followed by one Wolff
[27, 28] update of the planar components of the spins. This hybrid algorithm was used
to prevent critical slowing down and correlations between different configurations. The
simulations were performed considering different number of spins, N = L2, and we have
mainly used L = 32, 40, 52, 60 and 80 (note that the number of spins is the same of a regular
square lattice of size L). We start from a completely random configuration in the highest
temperature, running 105 MCS for equilibration at each temperature and 6 × 105 MCS to
obtain thermal averages, which have been obtained by taking 20 samples into account. After
obtaining such averages, at a given temperature, we take the last configuration to be the
initial one for the next step, and so forth. For a fixed size L we have performed an average
over two different VD lattices, say, two distinct random distributions of the L2 sites. In the
figures, the error bars are not shown when the statistical errors are smaller than the symbols
themselves and, for convenience, the temperature is measured in units of J, the exchange
constant, introduced in Hamiltonian (1).

3. Results and discussions

The lack of significant sharp peaks in the thermodynamic quantities as functions of temperature
for this model, especially for finite lattice systems, means that the determination of the critical
temperature, Tcr, is not a so easy task. As discussed in [18, 29–31], an interesting method
to determine Tcr for the XY-model is the size dependence of Binder’s fourth-order cumulant,
as below. This quantity is usually considered for Berezinskii–Kosterlitz–Thouless-type phase
transitions. Binder’s fourth-order cumulant [29, 30], U, is formally defined as

U = 1 −
〈(
M2

x + M2
y

)2〉

2
〈
M2

x + M2
y

〉2 , (2)

where Mx and My are the in-plane magnetization components. For every analyzed lattice
the asymptotic values of U are U(T 	 Tcr) = 0.5 and U(T 
 Tcr) = 0. At the critical
temperature, U is practically independent of L and, hence, Tcr is obtained from the crossing
point of curves of U for several lattice sizes, L. Figure 3 shows how U behaves for different L’s,
and our estimate for the phase transition temperature for the Voronoi–Delaunay (left figure)
and regular triangular (at the right) lattices, T VD

cr = 1.221 ± 0.007 J and T TL
cr = 1.156 ±

0.002, respectively.
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Figure 3. Binder’s cumulant, UL, versus temperature, T, for different values of L. The inset shows a
view around the estimated transition temperature for each lattice. On the left, for the VD network,
while for the regular triangular lattice on the right. Their respective critical temperatures read
T VD

cr = 1.221 ± 0.007 J and T TL
cr = 1.156 ± 0.002, indicated by the vertical dotted line. The lines

linking the symbols are just to guide the reader.

It is noteworthy to remark that while they share the same connectivity number, their
Tcr are distinct to each other by about 5–6%. Such a difference may be attributed to the
different topologies and/or geometries of the spins interaction in these two lattices. Our
results indicate that keeping the connectivity but distorting the structure of the lattice, an
extra amount of energy is demanded for vortex-pair unbinding take place. This appears to
be an interesting interplay between the connectivity number, k, and the (topological) phase
transition: the critical temperature is raised as long as k increases, as exemplified above. Such
an interplay also holds if k is diminished; for instance, whenever dilution (spin vacancies, etc)
is incorporated to the system the critical temperature is observed to get lower as long as more
and more vacancies are introduced, in such a way that as dilution approaches the percolation
threshold, ∼41%, then Tcr vanishes (extinction of the BKT-like transition) [17–21]. However,
a given variation in k does not yield a linear change in Tcr, as clearly shown by comparing
the respective results for VD and triangular lattices. The deviation from a linear dependence
may be credited to how spins are linked in the network, as pointed out above. In this respect,
it would be desirable to carry out further studies adopting networks which could have their
connectivity varied, but keeping the structure of sites distribution, in order to shed some extra
light on this issue. Such an investigation has additional relevance once it could be related to a
number of actual disordered lattices, like in amorphic materials.

Figure 4 shows the behavior of the in-plane magnetization 〈mxy〉 =
√

M2
x + M2

y , as a

function of the temperature, for L = 40, 60 and 80, whose behavior is qualitatively similar to
that verified in usual lattices.

As is well known, for the XY-model the thermodynamic quantities have a fundamental
dependence on the topological excitations, namely on vortex-like objects. Therefore, it should
be important to look for vortices in this disordered model and analyze their proliferation. To
do this, we have measured the vortex density, ρv , defined as

ρv(L) ≡ 1

L2

∑
l

δ2π,
∑

ij (φ
l
i−φl

j ),
(3)

where δ is the Kronecker delta, the summation
∑

l is performed over the set of spins that share
the same ‘neighbors’, and φl

i − φl
j is the difference among the angles of adjacent spins, with

φ being the angle that the spin vector makes with some fixed direction in the plane. Note that
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Figure 4. The in-plane magnetization, 〈mxy〉, versus the temperature T for some lattice sizes. Its
behavior is similar to its counterpart from regular lattices. The lines linking the symbols are just
to guide the reader.
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Figure 5. The vortex density ρv as a function of the temperature T for some L-values.
Note that ρv increases considerably around the critical temperature, T VD

cr ≈ 1.22 J, indicating
that the transition may be understood as a Berezinskii–Kosterlitz–Thouless-type (BKT) phase
transition caused by the unbinding of vortex pairs. The inset shows the vortex density saturation
ρsat = 0.399 756 ± 0.000 004 (horizontal dotted line), obtained for L = 80, at high temperature.
To obtain that we have performed an average over five different samples. The lines linking the
symbols are just to guide the reader.

only the set of spins, indexed by l, whose summation
∑

ij φl
i − φl

j is 2π (in fact, very close
to 2π , due numerical errors) contributes to ρv [32]. Here, it is also important to distinguish
L2 from the plaquette number: in a square lattice both quantities acquire the same meaning
and value, but in a VD network they are quite different. We have kept L2 in the denominator
of expression (3) for the sake of later comparison. In addition, we consider only excitations
with topological charge Q = +1 (the number of antivortices, with Q = −1, exactly equals the
number of vortices, due to topological charge conservation). The vortex density, ρv , slowly
rises until the transition temperature T VD

cr ≈ 1.22 J, where a pronounced increase is observed.
Therefore, it is reasonable to associate this transition with the mechanism of vortex–antivortex
unbinding, in analogy with what happens in the BKT phenomenology. To understand more
deeply the intrinsic relation between vortices and the BKT transition, it should be instructive
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to compare the total vortex densities (including also the antivortices) in regular square (SL)
and VD lattices (these total densities will be referred to as ρSL and ρVD = 2ρv , respectively).
Results from [32, 33] dictate that ρSL is much larger than ρVD for a wide range of temperatures,
say, for T < T0, with a certain T0 > T VD

c . Such greater proliferation of vortices at relatively
low temperatures justifies the lower critical temperature observed in the square lattice. On the
other hand, for T > T0, ρVD overcomes ρSL. Indeed, the inset of figure 5 shows the behavior
of ρv (and consequently ρVD), for a larger range of T. Note that it increases monotonically up
to a maximum value saturating to ρsat

VD ≈ 0.798 as T → ∞ (in a SL one has ρsat
SL ≈ 0.333

[32, 33]). This fact can be explained as follows: although we are considering the same number
of sites for SL and VD lattices, the number of plaquettes in the VD lattice is much larger than
that in the SL. For example, for L = 40, there are 1600 plaquettes in SL and 5044 in the
VD lattice, say, there is ‘more space’ to put in much more vortices in the VD framework.
Therefore, at high temperature, the study of the XY-model in a VD lattice may be also useful
to generate insights about the properties of systems in the regime of high density of topological
objects.

4. Concluding remarks

We have performed Monte Carlo simulations for studying the 2D XY-model and the BKT
transition in a Voronoi–Delaunay lattice. Since this system is constructed by randomly
distributing L2 sites on a square region of linear length L, the number of connections between
the spins varies from site to site, while the mean number of connections per site reads
k ≈ 6. Essentially, the different topology of the interactions in the VD lattice changes the
thermodynamical properties of the model, increasing the critical temperature and modifying
the vortex density when compared to the regular lattices. In addition, we recall that in diluted
systems (e.g., with spin vacancies randomly incorporated) the decrease in k is inevitably
accompanied by a decrease in the critical temperature, which vanishes if vacancies get beyond
the square lattice percolation threshold, � ≈ 0.41 [17, 18, 20, 21]. Thus, an interesting
interplay between k and Tcr can be realized: as long as one of these quantities is raised, the
same occurs to the other, and vice versa. However, such a relation is not a linear function, this
is illustrated by considering the triangular and VD lattices, which have the same connectivity,
but distinct Tcr, by about 5%. Such a difference is then associated with the structure of the
lattice itself, say, how the sites are distributed. A similar analogy concerns vortex densities.
Actually, we have seen that ρSL > ρVD for temperatures T < T0, while the converse takes
place for T > T0, which is a reference temperature satisfying T0 > T VD

c (see figure 5 and the
related text). Additionally, at low temperature, T < Tcr, the vortex density in regular lattices
is smaller than that in diluted systems (smaller connectivity), while the situation is inverted at
high temperatures [34]. Thus, the vortex proliferation and the mean number of connections
per site are somewhat related, at low temperature, since as long as k decreases, the vortex
density appears to increase. Moreover, in diluted materials, even excitations with much higher
energies such as vortices with double topological charge (Q = 2) are easier to observe in the
simulations [34, 35]. How the structure and topology of the links in a given lattice may affect
the appearance of higher-charged vortices is under investigation and concerning results will
be published elsewhere.
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